Subscribe for articles, webinar announcements and resources delivered to your inbox monthly.

Subscribe
March 8, 2021

Bare Amperometric Sensor vs. Membrane Sensor Technology

Looking to measure oxidant in an application that frequently shuts down and starts up? Want to reduce the impact of flow and pressure changes on your oxidant measurement system? Switching from a membrane-style amperometric measurement system gives you these benefits and more. Watch our new video to learn about Kuntze's bare amperometric sensors and how they outperform membrane sensor technology.

 

 

Were you looking to compare Kuntze systems to online colorimetric sensor technologies? Click here to learn more

February 8, 2021

Bare Amperometric Sensor vs. Online Colorimetric Sensor Technology

Looking to eliminate the need for reagents for your oxidant measurement? Want a more environmentally-friendly and cost-effective measurement system that doesn't need a hazardous waste stream? Switching from an online colorimetric measurement system gives you these benefits and more. Watch our new video to learn about Kuntze's bare amperometric sensor technology and how it outperforms online colorimetric systems. 

 

 

 

 

Were you looking to compare Kuntze systems to membrane sensor technologies? Click here to learn more

December 4, 2020

Free vs. Total Chlorine

Free chlorine is the combination of Cl2, HOCl, and OCl-. Combined chlorine is formed when ammonia is added to free chlorine, yielding chloramines (mono-, di-, tri-, organic). Total chlorine is the combination of free and combined chlorine in solution.

Free, combined, and total chlorine

For applications that contain no ammonia, a free chlorine measurement is appropriate. For applications where ammonia or chloramines might be present (e.g. wastewater and drinking water), a total chlorine measurement is appropriate.

The main difference is which probe you will use. The Kuntze Zirkon® DIS is for a free chlorine measurement, and measures the presence of only HOCl. The Kuntze Zirkon® DIS Total (right sensor shown) measures the presence of both HOCl and OCl-, which allows the analyzer to give a total chlorine measurement.

Be sure your reference measurement is configured to measure the correct parameter, and that you have purchased the correct reagents to do so. The free chlorine measurement works best below pH 8.5, while the total chlorine measurement is capable of going up to pH 10. If you have any further questions, please contact a Kuntze representative.

 
November 20, 2020

The Importance of Timing on Reference Measurements

Many applications have fast-moving oxidant concentrations, while others are more gradual. Regardless of the application, the timing of reference measurements is critical.

Graph for Blog Post

In the plot above, the Kuntze analyzer signal (blue line) matches well with the DPD measurements entered without rounding (green circles). The rounded DPD measurements (filled red circles) do not match with the Kuntze signal. If they had been entered without any rounding (empty red circles), they would have matched up. This plot shows how even small discrepancies (5 minutes or less) in the timing can affect the quality of the reference measurements.

To avoid timing errors, follow this procedure:

  1. Make a note of the time the sample is taken using the clock in the upper right-hand corner of the analyzer.
  2. Take your reference measurement as quickly possible.
  3. Enter your measurement using the time you noted in Step 1 without rounding the time.
1